Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death.
نویسندگان
چکیده
Reducible heparin nanogels cross-linked with disulfide linkages were developed for efficient cellular uptake of therapeutic heparin to induce apoptotic cell death. The heparin nanogels were synthesized by forming nanocomplexes between thiolated heparin and poly(ethylene glycol) in a selected organic solvent, and subsequently producing intermolecular disulfide bonds between thiolated heparin molecules by ultrasonication. The resultant heparin nanogels had a stable structure with an average diameter of 248.7+/-26.8nm in aqueous solution. However, they rapidly disintegrated and released free heparin molecules under reductive environments, such as intracellular cytosol, through the cleavage of disulfide cross-links within their network structure. Confocal laser scanning microscopy and flow cytometric analysis revealed that these heparin nanogels significantly inhibited proliferation of mouse melanoma cells by inducing caspase-mediated apoptotic cell death. The present study suggested that the reducible heparin nanogels exhibiting a remarkable apoptotic activity could be potentially applied for cancer cell targeted delivery when combined with various therapeutic and diagnostic agents.
منابع مشابه
Poly I:C Delivery into J774.1 & RAW264.7 Macrophages Induces Rapid Cell Death
Background: Cytosolic double-stranded RNA (dsRNA) is an important ‘molecular signature’ for the detection of intracellular viral infections. Although intracellular dsRNA is a known potent inducer of apoptosis, the optimal time and dose for the onset of dsRNA-mediated apoptosis have not been studied in detail. Objective: To perform an accurate temporal assessment of the cell death responses in d...
متن کاملHighly photostable nanogels for fluorescence-based theranostics.
A novel photo-crosslinkable nanogel is prepared from a biodegradable polymer template with intrinsic photoluminescence and high photostability. The fluorescent nanogels display excellent biodegradability and cytocompatibility owed to the facile synthesis scheme involving a solvent-and surfactant-free one-pot reaction, derived entirely from biocompatible monomers citric acid, maleic acid, L-cyst...
متن کاملDesign, Synthesis and Characterization of Nano niosomal Delivery system Containing paclitaxel drug for Drug Delivery to Osteosarcoma Cell Line (Saos-2)
Introduction: Osteosarcoma is one of the cancers that current treatment strategies using chemotherapy drugs have not been very successful due to multiple drug resistance and harmful side effects. The use of nano-niosomal systems in the delivery of paclitaxel is one of the attractive approaches to overcome these limitations. paclitaxel is a powerful anticancer agent used in the treatment of many...
متن کاملEfficient Inhibition of Ovarian Cancer by Gelonin Toxin Gene Delivered by Biodegradable Cationic Heparin-polyethyleneimine Nanogels
The use of toxins for cancer therapy has great promise. Gelonin, a potent plant toxin, causes cell death by inactivating the 60S ribosomal subunit. Recently, we developed a novel gene delivery system using biodegradable cationic heparin-polyethyleneimine (HPEI) nanogels. In the current study, the antitumor activity of a recombinant plasmid expressing gelonin (pGelonin) on human ovarian cancer w...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 29 23 شماره
صفحات -
تاریخ انتشار 2008